Relative Equilibria of the (1+N)-Vortex Problem

نویسندگان

  • Anna M. Barry
  • Glen R. Hall
  • C. Eugene Wayne
چکیده

We examine existence and stability of relative equilibria of the nvortex problem specialized to the case where N vortices have small and equal circulation and one vortex has large circulation. As the small circulation tends to zero, the weak vortices tend to a circle centered on the strong vortex. A special potential function of this limiting problem can be used to characterize orbits and stability. Whenever a critical point of this function is nondegenerate, we prove that the orbit can be continued via the Implicit Function Theorem, and its linear stability is determined by the eigenvalues of the Hessian matrix of the potential. For N ≥ 3 there are at least three distinct families of critical points associated to the limiting problem. Assuming nondegeneracy, one of these families continues to a linearly stable class of relative equilibria with small and large circulation of the same sign. This class becomes unstable as the small circulation passes through zero and changes sign. Another family of critical points which is always nondegenerate continues to a configuration with small vortices arranged in an N -gon about the strong central vortex. This class of relative equilibria is linearly unstable regardless of the sign of the small circulation when N ≥ 4. Numerical results suggest that the third family of critical points of the limiting problem also continues to a linearly unstable class of solutions of the full problem independent of the sign of the small circulation. Thus there is evidence that linearly stable relative equilibria exist when the large and small circulation strengths are of the same sign, but that no such solutions exist when they have opposite signs. The results of this paper are in contrast to those of the analogous celestial mechanics problem, for which the N -gon is the only relative equilibrium for N sufficiently large, and is linearly stable if and only if N ≥ 7.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on the energy of relative equilibria of point vortices

The problem of determining relative equilibria of identical point vortices is longstanding. The simplest such equilibria, vortices arranged at the vertices of a regular polygon with or without one at the center, go back to the work by Kelvin and Thomson late in the 19th century, and are wound up with the now defunct theory of vortex atoms. Many years later, Havelock found relative equilibria co...

متن کامل

Stability of Relative Equilibria in the Planar n-Vortex Problem

We study the linear and nonlinear stability of relative equilibria in the planar n-vortex problem, adapting the approach of Moeckel from the corresponding problem in celestial mechanics. After establishing some general theory, a topological approach is taken to show that for the case of positive circulations, a relative equilibrium is linearly stable if and only if it is a nondegenerate minimum...

متن کامل

Finiteness of Relative Equilibria in the Planar Generalized N-body Problem with Fixed Subconfigurations

We prove that a fixed configuration of N − 1 masses in the plane can be extended to a central configuration of N masses by adding a specified additional mass only in finitely many ways. This holds for a family of potential functions including the Newtonian gravitational case and the classical planar point vortex model.

متن کامل

On polygonal relative equilibria in the N-vortex problem

Helmholtz’s equations provide the motion of a system of N vortices which describes a planar incompressible fluid. A relative equilibrium is a particular solution of these equations for which the distances between the particles are invariant during the motion. In this article, we are interested in relative equilibria formed of concentric regular polygons of vortices. We show that in the case of ...

متن کامل

Reduction of the planar 4-vortex system at zero momentum

The system of four point vortices in the plane has relative equilibria that behave as composite particles, in the case where three of the vortices have strength −Γ/3 and one of the vortices has strength Γ. These relative equilibria occur at nongeneric momenta. The reduction of this system, at those momenta, by continuous and then discrete symmetries, classifies the 4-vortex states which have be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Nonlinear Science

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2012